Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.724
Filtrar
1.
Sci Rep ; 14(1): 8346, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594484

RESUMO

Nest-building behavior is a widely observed innate behavior. A nest provides animals with a secure environment for parenting, sleep, feeding, reproduction, and temperature maintenance. Since animal infants spend their time in a nest, nest-building behavior has been generally studied as parental behaviors, and the medial preoptic area (MPOA) neurons are known to be involved in parental nest-building. However, nest-building of singly housed male mice has been less examined. Here we show that male mice spent longer time in nest-building at the early to middle dark phase and at the end of the dark phase. These two periods are followed by sleep-rich periods. When a nest was removed and fresh nest material was introduced, both male and female mice built nests at Zeitgeber time (ZT) 6, but not at ZT12. Using Fos-immunostaining combined with double in situ hybridization of Vgat and Vglut2, we found that Vgat- and Vglut2-positive cells of the lateral preoptic area (LPOA) were the only hypothalamic neuron population that exhibited a greater number of activated cells in response to fresh nest material at ZT6, compared to being naturally awake at ZT12. Fos-positive LPOA neurons were negative for estrogen receptor 1 (Esr1). Both Vgat-positive and Vglut2-positive neurons in both the LPOA and MPOA were activated at pup retrieval by male mice. Our findings suggest the possibility that GABAergic and glutamatergic neurons in the LPOA are associated with nest-building behavior in male mice.


Assuntos
Hipotálamo , Área Pré-Óptica , Humanos , Camundongos , Masculino , Feminino , Animais , Hipotálamo/fisiologia , Área Pré-Óptica/fisiologia , Neurônios/fisiologia
2.
Behav Brain Res ; 465: 114958, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485056

RESUMO

The lateral hypothalamic nucleus (LHy) is located in the dorsolateral hypothalamus of birds, and it is essential to many life processes. However, limited information is available about the role of LHy in mediating locomotive behaviors. In this work, we investigated the structure and function of LHy in pigeons (Columba livia) by Nissl staining, immunohistochemical (IHC) staining, insituhybridization (ISH) staining and constant current stimulation methods. The results showed that LHy appears crescent in shape, and three-dimensional coordinate value range of LHy is: A: 5.0-8.0 mm, L: 0.7-1.2 mm, D: 9.5-10.3 mm. The dopaminergic neurons in LHy were distributed in small amount and concentrated manner, while the glutamatergic neurons were distributed in a large number and uniform manner. The distribution of the above two neurons at each coronal level showed a significant positive correlation (R2 = 0.7516, P < 0.001). Our work demonstrated that LHy mainly mediates forward movement (P < 0.01) and ipsilateral lateral movement (P < 0.001), and these movements were significantly effected by electrical stimulation intensity. Our results showed that LHy can mediate the generation of directional behavior and this will provide technical support for the study of locomotor behavior regulation in birds.


Assuntos
Columbidae , Região Hipotalâmica Lateral , Animais , Hipotálamo/fisiologia , Neurônios
3.
Nat Neurosci ; 27(4): 702-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347201

RESUMO

Social behaviors often consist of a motivational phase followed by action. Here we show that neurons in the ventromedial hypothalamus ventrolateral area (VMHvl) of mice encode the temporal sequence of aggressive motivation to action. The VMHvl receives local inhibitory input (VMHvl shell) and long-range input from the medial preoptic area (MPO) with functional coupling to neurons with specific temporal profiles. Encoding models reveal that during aggression, VMHvl shellvgat+ activity peaks at the start of an attack, whereas activity from the MPO-VMHvlvgat+ input peaks at specific interaction endpoints. Activation of the MPO-VMHvlvgat+ input promotes and prolongs a low motivation state, whereas activation of VMHvl shellvgat+ results in action-related deficits, acutely terminating attack. Moreover, stimulation of MPO-VMHvlvgat+ input is positively valenced and anxiolytic. Together, these data demonstrate how distinct inhibitory inputs to the hypothalamus can independently gate the motivational and action phases of aggression through a single locus of control.


Assuntos
Agressão , Motivação , Camundongos , Animais , Agressão/fisiologia , Comportamento Social , Hipotálamo/fisiologia , Neurônios/fisiologia
4.
Diabetes Obes Metab ; 26 Suppl 2: 3-12, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351898

RESUMO

BACKGROUND: Hypothalamic centres have been recognized to play a central role in body weight regulation for nearly 70 years. AIMS: In this review, we will explore the current undersanding of the role the hypothalamus plays in controlling food intake behaviours. MATERIALS AND METHODS: Review of relevant literature from PubMed searches and review article citations. RESULTS: Beginning with autopsy studies showing destructive hypothalamic lesions in patients manifesting hyperphagia and rapid weight gain, followed by animal lesioning studies pinpointing adjacent hypothalamic sites as the 'satiety' centre and the 'feeding' centre of the brain, the neurocircuitry that governs our body weight is now understood to consist of a complex, interconnected network, including the hypothalamus and extending to cortical sites, reward centres and brainstem. Neurons in these sites receive afferent signals from the gastrointestinal tract and adipose tissue indicating food availability, calorie content, as well as body fat mass. DISCUSSION: Integration of these complex signals leads to modulation of the two prime effector systems that defend a body fat mass set point: food intake and energy expenditure. CONCLUSION: Understanding the hypothalamic control of food intake forms the foundation for understanding and managing obesity as a chronic disease.


Assuntos
Hipotálamo , Obesidade , Animais , Humanos , Hipotálamo/fisiologia , Obesidade/metabolismo , Peso Corporal , Tecido Adiposo/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético
6.
Trends Cogn Sci ; 28(1): 18-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37758590

RESUMO

Despite the physiological complexity of the hypothalamus, its role is typically restricted to initiation or cessation of innate behaviors. For example, theories of lateral hypothalamus argue that it is a switch to turn feeding 'on' and 'off' as dictated by higher-order structures that render when feeding is appropriate. However, recent data demonstrate that the lateral hypothalamus is critical for learning about food-related cues. Furthermore, the lateral hypothalamus opposes learning about information that is neutral or distal to food. This reveals the lateral hypothalamus as a unique arbitrator of learning capable of shifting behavior toward or away from important events. This has relevance for disorders characterized by changes in this balance, including addiction and schizophrenia. Generally, this suggests that hypothalamic function is more complex than increasing or decreasing innate behaviors.


Assuntos
Região Hipotalâmica Lateral , Hipotálamo , Humanos , Região Hipotalâmica Lateral/fisiologia , Hipotálamo/fisiologia , Aprendizagem/fisiologia , Sinais (Psicologia) , Cognição , Recompensa
7.
Curr Biol ; 34(1): 12-23.e5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38096820

RESUMO

Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.


Assuntos
Privação do Sono , Sono , Camundongos , Animais , Sono/fisiologia , Hipotálamo/fisiologia , Área Pré-Óptica/fisiologia , Neurônios/fisiologia , Vigília/fisiologia
8.
Curr Biol ; 33(24): 5381-5389.e4, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37992720

RESUMO

Endotherms can survive low temperatures and food shortage by actively entering a hypometabolic state known as torpor. Although the decrease in metabolic rate and body temperature (Tb) during torpor is controlled by the brain, the specific neural circuits underlying these processes have not been comprehensively elucidated. In this study, we identify the neural circuits involved in torpor regulation by combining whole-brain mapping of torpor-activated neurons, cell-type-specific manipulation of neural activity, and viral tracing-based circuit mapping. We find that Trpm2-positive neurons in the preoptic area and Vgat-positive neurons in the dorsal medial hypothalamus are activated during torpor. Genetic silencing shows that the activity of either cell type is necessary to enter the torpor state. Finally, we show that these cells receive projections from the arcuate and suprachiasmatic nucleus and send projections to brain regions involved in thermoregulation. Our results demonstrate an essential role of hypothalamic neurons in the regulation of Tb and metabolic rate during torpor and identify critical nodes of the torpor regulatory network.


Assuntos
Hipotálamo , Torpor , Hipotálamo/fisiologia , Torpor/fisiologia , Área Pré-Óptica , Núcleo Supraquiasmático , Encéfalo
9.
Science ; 382(6669): 399-404, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883550

RESUMO

Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.


Assuntos
Hipotálamo , Comportamento Social , Animais , Agressão/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Sexual/fisiologia , Masculino , Feminino , Comportamento Materno/fisiologia , Comportamento Paterno/fisiologia , Comportamento Consumatório
10.
Science ; 382(6669): 388-394, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883552

RESUMO

The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.


Assuntos
Hipotálamo , Neurogênese , Animais , Hipotálamo/fisiologia , Hipotálamo/ultraestrutura , Mamíferos , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Análise da Expressão Gênica de Célula Única
11.
Science ; 382(6669): 405-412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883555

RESUMO

Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.


Assuntos
Hipotálamo , Neurônios , Sono REM , Sono de Ondas Lentas , Vigília , Animais , Regulação da Temperatura Corporal , Eletroencefalografia , Hipotálamo/citologia , Hipotálamo/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Humanos , Neurônios/fisiologia , Sono de Ondas Lentas/fisiologia
12.
Nat Commun ; 14(1): 6381, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821426

RESUMO

Circadian clocks generate rhythms of arousal, but the underlying molecular and cellular mechanisms remain unclear. In Drosophila, the clock output molecule WIDE AWAKE (WAKE) labels rhythmic neural networks and cyclically regulates sleep and arousal. Here, we show, in a male mouse model, that mWAKE/ANKFN1 labels a subpopulation of dorsomedial hypothalamus (DMH) neurons involved in rhythmic arousal and acts in the DMH to reduce arousal at night. In vivo Ca2+ imaging reveals elevated DMHmWAKE activity during wakefulness and rapid eye movement (REM) sleep, while patch-clamp recordings show that DMHmWAKE neurons fire more frequently at night. Chemogenetic manipulations demonstrate that DMHmWAKE neurons are necessary and sufficient for arousal. Single-cell profiling coupled with optogenetic activation experiments suggest that GABAergic DMHmWAKE neurons promote arousal. Surprisingly, our data suggest that mWAKE acts as a clock-dependent brake on arousal during the night, when mice are normally active. mWAKE levels peak at night under clock control, and loss of mWAKE leads to hyperarousal and greater DMHmWAKE neuronal excitability specifically at night. These results suggest that the clock does not solely promote arousal during an animal's active period, but instead uses opposing processes to produce appropriate levels of arousal in a time-dependent manner.


Assuntos
Relógios Circadianos , Sono , Camundongos , Animais , Masculino , Nível de Alerta/fisiologia , Neurônios/fisiologia , Hipotálamo/fisiologia , Ritmo Circadiano/fisiologia
13.
Ann N Y Acad Sci ; 1530(1): 138-151, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37818796

RESUMO

Previous studies showed that the dorsal premammillary nucleus of the hypothalamus (PMD) is involved in social passive defensive behaviors likely to be meditated by descending projections to the periaqueductal gray (PAG). We focused on the rostral dorsomedial PAG (rPAGdm) to reveal its putative neural mechanisms involved in mediating social defensive responses. By combining retrograde tracing and FOS expression analysis, we showed that in addition to the PMD, the rPAGdm is influenced by several brain sites active during social defeat. Next, we found that cytotoxic lesions of the rPAGdm drastically reduced passive defense and did not affect active defensive responses. We then examined the rPAGdm's projection pattern and found that the PAGdm projections are mostly restricted to midbrain sites, including the precommissural nucleus, different columns of the PAG, and the cuneiform nucleus (CUN). Also, we found decreased FOS expression in the caudal PAGdm, CUN, and PMD after the rPAGdm was lesioned. The results support that the rPAGdm mediates passive social defensive responses through ascending paths to prosencephalic circuits likely mediated by the CUN. This study provides further support for the role of the PAG in the modulation of behavioral responses by working as a unique hub for influencing prosencephalic sites during the mediation of aversive responses.


Assuntos
Substância Cinzenta Periaquedutal , Derrota Social , Ratos , Animais , Substância Cinzenta Periaquedutal/fisiologia , Hipotálamo/fisiologia
14.
Science ; 381(6665): eabl7398, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769095

RESUMO

Systemic metabolism has to be constantly adjusted to the variance of food intake and even be prepared for anticipated changes in nutrient availability. Therefore, the brain integrates multiple homeostatic signals with numerous cues that predict future deviations in energy supply. Recently, our understanding of the neural pathways underlying these regulatory principles-as well as their convergence in the hypothalamus as the key coordinator of food intake, energy expenditure, and glucose metabolism-have been revealed. These advances have changed our view of brain-dependent control of metabolic physiology. In this Review, we discuss new concepts about how alterations in these pathways contribute to the development of prevalent metabolic diseases such as obesity and type 2 diabetes mellitus and how this emerging knowledge may provide new targets for their treatment.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Ingestão de Alimentos , Metabolismo Energético , Hipotálamo , Vias Neurais , Obesidade , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Homeostase , Hipotálamo/fisiologia , Obesidade/fisiopatologia , Vias Neurais/fisiopatologia
15.
Nat Neurosci ; 26(10): 1820-1832, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735498

RESUMO

Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.


Assuntos
Neurônios , Sono REM , Camundongos , Animais , Sono REM/fisiologia , Neurônios/fisiologia , Hipotálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Região Hipotalâmica Lateral , Sono/fisiologia
16.
Nat Neurosci ; 26(10): 1805-1819, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735497

RESUMO

The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.


Assuntos
Região Hipotalâmica Lateral , Neurônios , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Neurônios/fisiologia , Somatostatina/metabolismo , Sono/fisiologia , Hipotálamo/fisiologia , Ácido gama-Aminobutírico , Córtex Pré-Frontal/fisiologia , Mamíferos/metabolismo
17.
Nature ; 621(7980): 788-795, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730989

RESUMO

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Assuntos
Comportamento Materno , Vias Neurais , Neurônios , Ocitocina , Vocalização Animal , Animais , Feminino , Camundongos , Sinais (Psicologia) , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Fotometria , Núcleos Talâmicos/fisiologia , Vocalização Animal/fisiologia , Vigília
18.
Front Endocrinol (Lausanne) ; 14: 1202089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448468

RESUMO

Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.


Assuntos
Hipotálamo , Obesidade , Humanos , Hipotálamo/fisiologia , Núcleo Arqueado do Hipotálamo , Encéfalo , Ingestão de Alimentos
20.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295578

RESUMO

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Proglucagon , Transdução de Sinais , Animais , Ratos , Hipotálamo/fisiologia , Proglucagon/metabolismo , Ratos Sprague-Dawley , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Sinapses , Fibras Nervosas/metabolismo , Eletrofisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resposta de Saciedade , Comportamento Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...